Complete Python Pandas Data Science Tutorial! (2025 Updated Edition)

Інформація про завантаження та деталі відео Complete Python Pandas Data Science Tutorial! (2025 Updated Edition)
Автор:
Keith GalliДата публікації:
29.06.2024Переглядів:
592.1KОпис:
Hey, what's up everyone? Welcome back to another video! I'm super excited for this one. We're doing another complete Python Pandas tutorial walkthrough. Five years have passed since the last iteration, and both the library and my knowledge have evolved. We'll cover all the basics and advanced techniques to analyze and manipulate tabular data with Pandas. Whether you're a beginner or an experienced user looking to level up, there's something here for everyone. Let's dive in! 0:00 - Video Overview 1:11 - Getting Started with Python Pandas | Google Colab 1:21 - Getting Started with Python Pandas | Local Environment Setup (Cloning code, using virtual environment, VS Code) 3:58 - Intro to Dataframes | Creating DataFrames, Index/Columns, Basic Functionality 8:25 - Loading in DataFrames from Files (CSV, Excel, Parquet, etc.) 13:42 - Accessing Data | .head() .tail() .sample() 15:28 - Accessing Data | .loc() .iloc() 19:20 - Setting DataFrame Values w/ loc() & iloc() 20:20 - Accessing Single Values | .at() .iat() 21:11 - Accessing Data | Grab Columns, Sort Values, Ascending/Descending 23:01 - Iterating over a DataFrame (df) with a For Loop | df.iterrows() 24:12 - Filtering Data | Syntax Options, Numeric Values, Multiple Conditions 27:58 - Filtering Data | String Operations, Regular Expressions (Regex) 33:09 - Filtering Data | Query Functions 34:20 - Adding / Removing Columns | Basics, Conditional Values, Math Operations, Renaming Columns 41:40 - Adding / Removing Columns | String Operations, Datetime (pd.to_datetime) Operations 46:38 - Saving our Updated DataFrame (df.to_csv, df.to_excel, df.to_parquet, etc) 47:14 - Adding / Removing Columns | Using Lambda & Custom Functions w/ .apply() 50:42 - Merging & Concatenating Data | pd.merge(), pd.concat(), types of joins 58:33 - Handling Null Values (NaNs) | .fillna() .interpolate() .dropna() .isna() .notna() 1:04:05 - Aggregating Data | value_counts() 1:05:47 - Aggregating Data | Using Groupby - groupby() .sum() .mean() .agg() 1:08:24 - Aggregating Data | Pivot Tables 1:10:28 - Groupby combined with Datetime Operations 1:14:38 - Advanced Functionality | .shift() .rank() .cumsum() .rolling() 1:22:10 - New Functionality | Pandas 1.0 vs Pandas 2.0 - pyarrow 1:25:29 - New Functionality | GitHub Copilot & OpenAI ChatGPT 1:32:05 - What Next?? | Continuing your Python Pandas Learning…
Схожі відео: Complete Python Pandas Data Science Tutorial

🔴 Let's build a Next-Gen AI Portfolio with NEXT.JS 16 (OpenAI AgentKit, MCP, Sanity, Clerk) | 2026

Machine Learning for Everybody – Full Course

Building LLMs from the Ground Up: A 3-hour Coding Workshop

Python Full Course for Beginners

Python for Data Science IBM Full Course | Analyzing Data with Python | Python Data Analysis

